

Available online at www.sciencedirect.com

Journal of Nuclear Materials 320 (2003) 156-162

www.elsevier.com/locate/jnucmat

Transmutation characteristics in thermal and fast neutron spectra: application to americium

V. Berthou^{a,*}, C. Degueldre^b, J. Magill^a

^a European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany ^b PSI, Laboratory for Material Behaviour, 5232 Villigen, Switzerland

Abstract

In this paper, a method is introduced which allows a quick and accurate evaluation of the overall transmutation rate of a nuclide in fast and thermal neutron spectra. The method is applied to ²⁴¹Am, a main contributor to the waste toxicity in the nuclear fuel cycle. Results show good agreement with the detailed calculations using ORIGEN code. © 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

²⁴¹Am is one of the main contributors to the waste toxicity of the spent fuel. Its transmutation into less radiotoxic isotopes is considered in nuclear reactors. In this study both thermal and fast neutron spectra have been compared for the transmutation of ²⁴¹Am. Two methods have been considered. The overall decrease in actinides mass during the irradiation has been examined using direct ORIGEN calculations. In a second method, the overall burnout time, necessary time to fission half of the initial quantity of ²⁴¹Am, has been calculated, and compared to the first method.

2. Reaction path of ²⁴¹Am under neutron irradiation

The neutron path of ²⁴¹Am under thermal neutron irradiation is shown in Fig. 1 [1].

In both thermal and fast neutron spectra the main reaction is (n, γ) radiative capture (see cross-sections in Table 1). In a fast neutron spectrum, there is more competition between capture and fission since the cap-

* Corresponding author.

E-mail address: berthou@itu.fzk.de (V. Berthou).

ture to fission ratio is 78 in thermal spectrum but only 3 in fast spectrum (for 241 Am).

During neutron irradiation, there are three basic reactions which lead to the disappearance of the actinides: capture, fission and decay.

From Fig. 1 it can be seen that ²⁴¹Am creates ^{242m}Am (10% branching ratio) and ²⁴²Am (90% branching ratio) by thermal neutron capture. Under fast neutron capture, the branching ratios are 15% for ^{242m}Am and 85% for ²⁴²Am. In both spectra, ^{242m}Am transmutes mainly by fission. ²⁴²Am, with a half-life of 16 h, has two decay modes: β^- emission that leads to ²⁴²Cm (83% branching) ratio) and electron capture that leads to ²⁴²Pu (17% branching ratio). ²⁴²Cm decays, with a half-life of 160 days to 238 Pu by α emission. Through radiative capture, ²³⁸Pu gives rise to ²³⁹Pu. ²³⁹Pu is removed predominantly by fission. Through radiative capture, the second daughter product of ²⁴²Am decay, ²⁴²Pu, gives rise to ²⁴³Pu which then decays, with a half-life of 5 h, to ²⁴³Am. Through decay and capture, ²⁴³Am gives rise to ²⁴⁴Am, ²⁴⁴Cm and ²⁴⁵Cm. ²⁴⁵Cm is removed predominantly by fission.

Table 1 gives a summary of the main actinides in spent fuel together with their half-lives, their fission, capture and absorption cross-sections in both thermal and fast reactors. These cross-sections are taken from the ORIGEN [2] libraries: PWRUS50.lib for the thermal spectrum and AMOPUUUC.lib for the fast spectrum.

Fig. 1. Reaction path of ²⁴¹Am under thermal neutron irradiation.

Table 1 Actinides half-lives and fission, capture, and absorption cross sections for thermal and fast neutron reactors (ORIGEN libraries)

	Half-life (years)	Thermal			Fast		
		$\sigma_{\rm c}$ (b)	$\sigma_{\rm f}$ (b)	$\sigma_{\rm a}$ (b)	$\sigma_{\rm c}$ (b)	$\sigma_{\rm f}$ (b)	$\sigma_{\rm a}$ (b)
²³⁵ U	Stable	9.51	41.00	50.51	0.53	1.87	2.40
²³⁸ U	Stable	0.92	0.10	1.02	0.28	0.05	0.33
²³⁷ Np	$2 \times 14 10^{6}$	30.97	0.52	31.49	1.43	0.39	1.82
²³⁸ Pu	87.7	29.78	2.20	31.98	0.69	1.19	1.88
²³⁹ Pu	$2.4 imes 10^4$	57.75	101.50	159.25	0.47	1.82	2.29
²⁴⁰ Pu	6.6×10^{3}	143.30	0.59	143.89	0.48	0.42	0.91
²⁴¹ Pu	14.3	35.37	107.00	142.37	0.44	2.44	2.88
²⁴² Pu	3.7×10^{5}	31.55	0.43	31.98	0.40	0.31	0.71
²⁴¹ Am	432	83.25	1.06	84.31	1.32	0.35	1.67
^{242m}Am	141	83.24	397.70	480.94	0.36	3.90	4.26
²⁴³ Am	7.37×10^{3}	49.68	0.41	50.09	1.01	0.27	1.28
²⁴² Cm	162.8 days	5.67	0.53	6.20	0.31	0.20	0.51
²⁴³ Cm	29.1	8.08	68.16	76.24	0.23	2.60	2.83
²⁴⁴ Cm	18.1	13.75	0.89	14.64	0.79	0.49	1.28
²⁴⁵ Cm	$8.5 imes 10^{3}$	24.89	147.00	171.89	0.30	2.59	2.89
²⁴⁶ Cm	$4.73 imes 10^3$	2.92	0.59	3.51	0.22	0.32	0.54

3. Irradiation of ²⁴¹Am ORIGEN calculations

3.1. Total actinide mass evolution

In order to compare the efficiency of the thermal and fast spectrum to transmute ²⁴¹Am, ORIGEN calculations have been made. Irradiation of ²⁴¹Am have been simulated under constant neutron flux of 3×10^{14} or 10^{15} n/cm²/s, for the two different spectra (libraries PWRUS50.lib for the thermal spectrum and AMO-PUUUC.lib for the fast spectrum), and during a long period of time.

Fig. 2 shows the evolution of the actinides masses versus the time, for the four different cases (two different spectra and two different levels of flux).

In Fig. 2 we can see that the total amount of actinides is decreasing very slowly in fast spectrum. With a standard flux for fast spectrum ($\phi = 10^{15}$ n/cm²/s), only 17% of the actinides are fissioned after 4000 days (11 years).

Half of the actinide mass would be fissioned after 31 years. From Fig. 2 clearly the thermal spectrum is more efficient to transmute ²⁴¹Am. In the case of a standard thermal flux of 3×10^{14} n/cm²/s, the disappearance of the actinides up to 95% can be reached after around 9000 days (less than 25 years). With a higher flux of 10^{15} n/cm²/s better results can be obtained and the fission of the actinides up to 95% is reached after only 4000 days (less than 11 years).

Clearly transmutation rates are higher in thermal spectrum than in fast spectrum for the same level of flux [3]. The transmutation rate is also higher in a typical PWR flux than in a typical fast reactor flux, although the level of flux is higher in the latter. An incineration rate of 95% is achieved in 25 years in a standard PWR thermal flux ($\phi = 3 \times 10^{14}$ n/cm²/s), while in a typical fast reactor flux ($\phi = 10^{15}$ n/cm²/s), 150 years is required.

The transmutation rate can be further increased by using a higher thermal flux. In a thermal flux of 10^{15} n/

Fig. 2. Total actinide mass versus time in different neutron spectra and fluxes.

cm²/s, an incineration rate of 95% is achieved in 11 years. This high flux, however, is not reachable in conventional PWR due to technological limits (heat removal, etc). Such high thermal flux can, however, be reached in a moderated zone of a fast reactor. This idea of using thermal zones of a fast reactor has been proposed by EDF [6]. In this P&T strategy, Pu is multirecycled in fast reactor, while special targets of Am are placed in moderated assemblies of the fast reactor for a long period of time (10 years). This strategy allows reducing the waste isolation times from 130 000 years (no P&T foreseen) up to 1500 years [4–6].

3.2. Evolution of the concentration of the isotopes in each studied case

3.2.1. Thermal spectrum, $\phi = 3 \times 10^{14} \text{ n/cm}^2/\text{s}$

Fig. 3 shows the evolution of the ²⁴¹Am and its main reaction products. We notice the quick build up of ²⁴²Cm, coming directly from the decay of ²⁴²Am. ^{242m}Am and ²⁴²Pu are also build up quite quickly as they are the two secondary reactions (10% branching ratio of ^{242m}Am by direct capture of the ²⁴¹Am, and 15% of production of ²⁴²Pu by successive captures of the ²⁴¹Am and ²⁴²Am). In the mean time the mass of ²⁴¹Am decreases very fast. Following the build up of ²⁴²Cm (maximum mass reached at 500 days), we see the build up of ²³⁸Pu (maximum mass reached at 1200 days), decay product of ²⁴²Cm. Then we notice the build up of ²³⁹Pu (produced by capture of ²³⁸Pu) which fissions. ²⁴²Pu is quite slow to disappear as its burnout time is quite long (4 years).

This is the isotope (and its reaction products) that takes the longest time to be burnt. ²⁴⁴Cm is built up quite slowly and will be the last one to disappear (captures to ²⁴⁵Cm and then fissions) as it is created by the successive

Fig. 3. Isotopic evolution in a thermal spectrum with a constant flux of 3×10^{14} n/cm²/s. Actinide mass is normalized to the initial isotope mass.

decay and capture of ²⁴²Pu, and as its burnout time is also quite long (4.6 years).

3.2.2. Thermal spectrum, $\phi = 10^{15} \text{ n/cm}^2/\text{s}$

Fig. 4 shows the evolution of the ²⁴¹Am and its main reaction products. Here again is studied the irradiation in thermal spectrum of ²⁴¹Am, but under a higher flux. Then the same reactions occur and the same isotopes are created. Quickly ^{242m}Am, ²⁴²Cm and ²⁴²Pu are build up, but in this case, faster than before (few hundred days), due to the higher flux that accelerates the capture. Just afterwards, around 500 days, we notice the build up of ²⁴³Am, reaction product of ²⁴²Pu (its mass peak arises just after the one of ²⁴²Pu). Following the mass peak of

Fig. 4. Isotopic evolution in a thermal spectrum with a constant flux of 10^{15} n/cm²/s. Actinide masse is normalized to the initial isotope mass.

²⁴²Cm, around 700 days, the one of ²³⁸Pu, decay product of ²⁴²Cm, arises. In this case we observe the decrease of the quantity of ²⁴⁴Cm (peak around 1100 days), and some creation (although in lower quantity than ²⁴⁴Cm) of ²⁴⁶Cm. The ²⁴⁵Cm (created by capture of ²⁴⁴Cm) mainly fissions, but its capture cross-section is also important and can lead to the creation of ²⁴⁶Cm.

3.2.3. Fast spectrum, $\phi = 10^{15} \text{ n/cm}^2/\text{s}$

Fig. 5 shows the evolution of ²⁴¹Am and its main reaction products. We notice the build up of some iso-

Fig. 5. Isotopic evolution in a fast spectrum with a constant flux of 10^{15} n/cm²/s. Actinide mass is normalized to the initial isotope mass.

Table 2Actinide burnout times for thermal and fast neutron spectra

topes coming from the capture of 241 Am: 242m Am, 242 Cm, and then, coming from 242 Cm, the 238 Pu and 239 Pu. We also notice the presence of a small quantity of 237 Np, α decay product of 241 Am.

4. The burnout time

4.1. Definition of the burnout time and individual values for the main actinides

The time evolution of a quantity N of an isotope under neutron irradiation is [1]

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -(\lambda + \sigma\phi)N,$$

where ϕ is the flux, σ the absorption cross-section, and λ the decay constant. If decay is the predominant reaction, then the time evolution of the quantity N is defined by

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

This equation leads by integration to $N(t) = N_0 e^{-\lambda t}$ where N_0 is the initial quantity. The necessary time to reduce by half the initial quantity is then $\tau_{\lambda} = \ln 2/\lambda$, where τ_{λ} is the half-life of the isotope.

By extension, if neutron absorption is the predominant reaction, then the time evolution of the quantity Nis defined by

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\sigma\phi N.$$

	Half-life (years)	Burnout time (days)					
	Q	Thermal 3×10^{14} (n/cm ² /s)	Thermal 10^{15} (n/cm ² /s)	Fast 3×10^{14} (n/cm ² /s)	Fast 10 ¹⁵ (n/cm ² /s)		
²³⁵ U	Stable	529	159	11 162	3349		
²³⁸ U	Stable	26181	7854	80 637	24 191		
²³⁷ Np	$2.14 imes10^6$	849	255	14 691	4407		
²³⁸ Pu	87.7	836	251	14 212	4264		
²³⁹ Pu	$2.4 imes 10^4$	168	50	11 673	3502		
²⁴⁰ Pu	6.6×10^{3}	186	56	29 426	8828		
²⁴¹ Pu	14.3	188	56	9291	2787		
²⁴² Pu	3.7×10^{5}	836	251	37 582	11 275		
²⁴¹ Am	432	317	95	16 058	4817		
^{242m}Am	141	56	17	6275	1883		
²⁴³ Am	7.37×10^{3}	534	1601	20 933	6280		
²⁴² Cm	162.8 days	4313	1294	52 807	15842		
²⁴³ Cm	29.1	351	105	9450	2835		
²⁴⁴ Cm	18.1	1826	548	20 871	6261		
²⁴⁵ Cm	8.5×10^{3}	156	47	9245	2773		
²⁴⁶ Cm	$4.73 imes 10^3$	7619	2286	49 41 1	14 823		

This equation leads by integration to $N(t) = N_0 e^{-\sigma \phi t}$ where N_0 is the initial quantity. The necessary time to reduce by half the initial quantity is then $\tau_{BU} = \ln 2/\sigma \phi$ where τ_{BU} is the burnout time of the isotope.

The burnout time then is the time necessary to transmute by neutron absorption half of the quantity of a nuclide under neutron irradiation. Ten burnout times are required to transmute a significant amount of the considered actinide (up to $1/2^{10} = 1/1024 = 0.001$).

Table 2 shows the burnout times in thermal and fast neutron spectrum and for two different levels of flux. We notice that burnout times have very different values depending on the actinide, the spectrum and the flux level. For any actinide, the burnout time is shorter in thermal spectrum, due to the higher cross-sections. Higher flux accelerates the transmutation.

This burnout time refers to the disappearance of an isotope. If the capture is the main reaction, then its 'transmutation' leads to the creation of another actinide.

4.2. Evaluation of an 'overall' burnout time for ²⁴¹ Am

We introduce in this section the concept of the 'overall' burnout time. The calculation method is based on the following algorithm (Fig. 6):

- 1. For the selected nuclide, the individual burnout time is evaluated, i.e. $\ln 2/(\lambda + \sigma_a \phi)$, where λ is the decay constant, σ_a the absorption cross-section ($\sigma_a = \sigma_f + \sigma_c$), and ϕ the neutron flux.
- 2. From a comparison of the branching ratios of the various processes (decay, fission, capture), we select the reaction with the highest branching ratio $(BR_{\lambda}, BR_{c} \text{ or } BR_{f})$.

Fig. 6. Overall burnout time algorithm.

- 3. If multiple reaction products, then select the reaction product with the highest branching ratio $(BR_{\lambda 1}, BR_{\lambda 2}, etc, BR_{c1}, BR_{c2}, etc)$.
- 4. We repeat steps 1, 2 and 3 for each new reaction product to obtain the burnout time and the main reaction product until a new reaction product is selected for which fission is the main process.
- We add the individual burnout time of all the reaction products selected to obtain the 'overall' burnout time.

Consider the case of ²⁴¹Am. In both thermal and fast spectrum, several reactions occur before reaching the fission of one of ²⁴¹Am reaction products. The branching ratios are calculated for each nuclide with the following formulas [1]:

$$BR_{decay} = \lambda / [\lambda + (\sigma_{f} + \sigma_{c}) \cdot \phi],$$

$$\mathrm{BR}_{\mathrm{capture}} = \sigma_{\mathrm{c}} \cdot \phi / [\lambda + (\sigma_{\mathrm{f}} + \sigma_{\mathrm{c}}) \cdot \phi]$$

 $BR_{fission} = \sigma_{f} \cdot \phi / [\lambda + (\sigma_{f} + \sigma_{c}) \cdot \phi].$

The 'overall' burnout time of ²⁴¹Am in thermal spectrum has been calculated with the algorithm:

- (i) ²⁴¹Am burnout time is calculated.
- (ii) The three branching ratios are: $BR_{decay} = 0.2\%$, $BR_{capture} = 98.5\%$, $BR_{fission} = 1.25\%$. Capture of ²⁴¹Am has the highest branching ratio.
- (iii) The capture leads to ^{242}Am ground state (BR_{c1} = 90%) and to ^{242m}Am metastable state (BR_{c2} = 10%). Then ^{242}Am is selected as main reaction product.
- (iv) ²⁴²Am burnout time is calculated.
- (v) $BR_{decay} = 100\%$ for ²⁴²Am. The decay is the main process.
- (vi) ²⁴²Am mainly decays to ²⁴²Cm (BR_{$\lambda 1$} = 83%) and to ²⁴²Pu (BR_{$\lambda 2$} = 17%). Therefore the main reaction product is ²⁴²Cm.
- (vii) ²⁴²Cm burnout time is calculated.
- (viii) $BR_{decay} = 99.9\%$. ²⁴²Cm mainly decays to ²³⁸Pu.
- (ix) ²³⁸Pu burnout time is calculated.
- (x) $BR_{decay} = 2.54\%$, $BR_{capture} = 90.77\%$, $BR_{fission} = 6.71\%$. ²³⁸Pu mainly captures to ²³⁹Pu.
- (xi) ²³⁹Pu burnout time is calculated.
- (xii) $BR_{decay} = 0\%$, $BR_{capture} = 36.26\%$, $BR_{fission} = 63.73\%$. ²³⁹Pu mainly fissions.
- (xiii) Sum of the burnout time of all the involved isotopes.

In fast spectrum the calculation process is the same, except that it ends up at the ²³⁸Pu which mainly fissions.

Eq. (1) shows the calculation of the 'overall' burnout time for 241 Am (the term in bracket is only included for the thermal spectrum calculations):

(1)

$$\begin{aligned} \tau_{\text{BU}} &= \tau_{\text{BU}(\text{Am241})} + \tau_{\text{BU}(\text{Am242})} + \tau_{\text{BU}(\text{Cm242})} \\ &+ \tau_{\text{BU}(\text{Pu238})} + (\tau_{\text{BU}(\text{Pu239})}). \end{aligned}$$

The specific values of the burnout times taken into account are summarized in Table 3.

For a standard neutron flux in thermal spectrum $(3 \times 10^{14} \text{ n/cm}^2/\text{s})$, we have a total burnout time of T = 1481 days (4 years). Then to transmute the total amount of actinides we need 1481 days $\times 10$ years, i.e. 40 years. For a higher flux ($\phi = 10^{15} \text{ n/cm}^2/\text{s}$) we obtain T = 556 days (1.5 years), then it requires 15 years to fission the ²⁴¹Am and all its reaction products. For a standard fast spectrum ($\phi = 10^{15} \text{ n/cm}^2/\text{s}$), 25 years is obtained as the overall burnout time, that means that 250 years are required to transmute the actinides. We can already notice that the thermal spectrum is better to transmute ²⁴¹Am as it is much faster to fission it and all its reaction products.

5. Comparison of ORIGEN calculations and the overall burnout time method

Fig. 7 shows the evolution of the actinides mass versus the time, for the four different cases (two different spectra and two different levels of flux). We observe in Fig. 7 that, for thermal spectrum, and with high flux level, after the theoretical burnout time of 556 days, the remaining quantity of actinides is 64%. It is more than the theoretical value of 50% (Eq. (1)). We also notice that after 2200 days (four burnout times) the remaining actinide quantity is around 11%, where it should be 6% in theory (after four burnout times, one 16th of the quantity should remain, i.e., 6%). This is due to the fact that only the main reactions are taken into account in the burnout time calculation. The parallel reaction that

Table 3

Burnout times of the isotopes in the ²⁴¹Am reaction chain

Fig. 7. Actinides mass evolution in different spectrum and fluxes versus the time.

occurs (decay of ²⁴²Am to ²⁴²Pu) leads to the creation of isotopes such as ²⁴³Am or ²⁴⁴Cm. Some of them have very long burnout time and remain present longer in the fuel. Then the actinide mass is increasing, as we notice in ORIGEN calculations.

The same comparison has been made for thermal spectrum and with a typical PWR flux level. After one burnout time (1480 days), 64% of the actinides mass has not been fissioned, and after four burnout times (6000 days), only 10% (in theory it should be one 16th, i.e. 6%). Here again the values obtained by ORIGEN calculations are above the theoretical ones, but this is due to the parallel reactions that are not taken into account in the overall burnout time method, and which create more actinides.

	Main reaction	Thermal flux 3×10^{14}	Thermal flux 10 ¹⁵	Fast flux 3×10^{14}	Fast flux 10 ¹⁵
$\tau_{BU(Am241)}$	Capture (days)	317	95	16058	4817
$\tau_{BU(Am242)}$	Decay (days)	0.667	0.667	0.667	0.667
$\tau_{\rm BU(Cm242)}$	Decay (days)	160	160	160	160
$\tau_{\rm BU(Pu238)}$	Capture-fission (days)	836	251	14212	4264
$ au_{\mathrm{BU}(\mathrm{Pu}239)}$	Fission (days)	168	50	_	_
Total		1481 (4 years)	556 (1.5 years)	30430 (83 years)	9241 (25 years)

Table 4

Comparison between the remaining mass with ORIGEN and burnout time calculations after one and four burnout times

	Eq. (1)	Thermal flux 3×10^{14} ORIGEN	Thermal flux 10 ¹⁵ ORIGEN	Fast flux 10 ¹⁵ ORIGEN
One burnout time (%)	50	64	64	60
Four burnout times (%)	6.25	12	10	10

For the typical fast flux, the overall burnout time is 25 years, and at this time 60% of the actinide mass is remaining in ORIGEN calculations.

Table 4 shows the remaining mass in ORIGEN calculations compared to the theoretical ones after the calculated burnout time:

This overall burnout time method gives rapidly a good order of magnitude for the time necessary to fission an isotope and all its reaction products.

6. Conclusion

We have studied the transmutation of ²⁴¹Am in both thermal and fast neutron spectra with two methods. We have proposed simple method to evaluate the overall time required to transmute an isotope. It has been based on an algorithm. The main reaction chain of a selected nuclide is considered. The chain stops when a reaction product mainly fissions. The sum of the burnout times of the reaction products involved in the chain represents the overall burnout time of the initial nuclide. Comparison of the results with a more exact ORIGEN calculation shows good agreement. This method gives quickly a good order of magnitude of the overall transmutation rate of an actinide in fast and thermal neutron spectra. This method can be further applied to other actinides.

References

- J. Magill, Nuclides.net. An Integrated Environment for Computations on Radionuclides and their Radiation, Springer Verlag, ISBN 3-540-43448-8, 2002. For further information, see the Nuclides.net website at http://www.nuclides. net.
- [2] http://www.ornl.gov/origen-arp/origen-arp.html.
- [3] J.M. Li, J.L. Kloosterman, Netherlands Energy Research Foundation ECN, Report ECN-C-95-055, 1995.
- [4] D. Haas, R.J.M. Konings, J. Magill, V. Berthou, in: Proceedings of ENC 2002 Scientific Seminar, Lille, France, 7–9 October 2002.
- [5] J. Magill, V. Berthou, J. Galy, R. Schenkel, H.-W. Wiese, G. Heusener, J. Tommasi, G. Youinou, European Commission, JRC, Institute for Transuranium Elements, Technical Report, JRC-ITU-TN-2002/24.
- [6] J.-P. Grouiller, S. Pillon, C. de Saint Jean, F. Varaine, L. Leyval, G. Vambenepe, B. Carlier, these Proceedings doi:10.1016/S0022-3115(03)00184-3.